Impact of ultrasonic dispersion on the photocatalytic activity of titania aggregates

نویسندگان

  • Hoai Nga Le
  • Frank Babick
  • Klaus Kühn
  • Minh Tan Nguyen
  • Michael Stintz
  • Gianaurelio Cuniberti
چکیده

The effectiveness of photocatalytic materials increases with the specific surface area, thus nanoscale photocatalyst particles are preferred. However, such nanomaterials are frequently found in an aggregated state, which may reduce the photocatalytic activity due to internal obscuration and the extended diffusion path of the molecules to be treated. This paper investigates the effect of aggregate size on the photocatalytic activity of pyrogenic titania (Aeroxide(®) P25, Evonik), which is widely used in fundamental photocatalysis research. Well-defined and reproducible aggregate sizes were achieved by ultrasonic dispersion. The photocatalytic activity was examined by the color removal of methylene blue (MB) with a laboratory-scale setup based on a plug flow reactor (PFR) and planar UV illumination. The process parameters such as flow regime, optical path length and UV intensity are well-defined and can be varied. Our results firstly show that a complete dispersion of the P25 aggregates is not practical. Secondly, the photocatalytic activity is not further increased beyond a certain degree of dispersion, which probably corresponds to a critical size for which UV irradiation can penetrate the aggregate without significant obscuration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photocatalytic self-cleaning properties of lanthanum and silver co-doped TiO2 nanocomposite on polymeric fibers

Titania, single-doped and lanthanum-silver co-doped titania nanocomposite were coated on cellulosic and polyacrylonitrile fibers via sol–gel method. The prepared samples were evaluated using x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), photolumines...

متن کامل

Photocatalytic self-cleaning properties of lanthanum and silver co-doped TiO2 nanocomposite on polymeric fibers

Titania, single-doped and lanthanum-silver co-doped titania nanocomposite were coated on cellulosic and polyacrylonitrile fibers via sol–gel method. The prepared samples were evaluated using x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), photolumines...

متن کامل

Photocatalytic Coating Using Titania-Silica Core/Shell Nanoparticles

The photocatalytic coatings were prepared via incorporating the modified titania nanoparticles into epoxy-based inorganic-organic hybrid coatings. Titania nanoparticles were first synthesized from tetra-n-butyl titanate using sol-gel methods by two different calcination treatments, i.e., in mild condition (80°C) and 500°C. The formed anatase nanoparticles were further modified as Titania-Silica...

متن کامل

Photocatalytic Coating Using Titania-Silica Core/Shell Nanoparticles

The photocatalytic coatings were prepared via incorporating the modified titania nanoparticles into epoxy-based inorganic-organic hybrid coatings. Titania nanoparticles were first synthesized from tetra-n-butyl titanate using sol-gel methods by two different calcination treatments, i.e., in mild condition (80°C) and 500°C. The formed anatase nanoparticles were further modified as Titania-Silica...

متن کامل

Facile Fabrication of Boron-Doped Titania Nanopowders by Atmospheric Pressure Chemical Vapor Synthesis Route and its Photocatalytic Activity

The Atmospheric Pressure Chemical Vapor Synthesis (APCVS) route is a process that can be used for the synthesis of doped-nanocrystalline powders with very small crystallite sizes having a narrow particle size distribution and high purity. In this study, APCVS technique was used to prepare boron-doped titania nanopowders. The effects of temperature, borate flow rate and water flow rate on the am...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015